Vladimir Sotirov (Sofia)
نویسنده
چکیده
“La maniere d'enoncer vulgaire regarde plustost les individus, mais celle d'Aristote a plus d'egard aux idées ou universaux. Car disant ‘tout homme est animal’, je veux dire que tous les hommes sont compris dans tous les animaux; mais j'entends en même temps que l'idée de l'animal est comprise dans l'idée de l'homme. L'animal comprend plus d'individus que l'homme, mais l'homme comprend plus d'idées ou plus de formalités; l'un a plus d'exemples, l'autre plus de degrés de realité; l'un a plus d'extension, l'autre plus d'intension” (GP V, 496).
منابع مشابه
A Gentle Introduction to Descent
!! Ui // X The modules Mi are “restrictions“ or pullbacks of M along Ui → X, and are compatible in that if Mi,j is the pullback of Mi over Ui along Ui ×X Uj → Ui, then we have isomorphisms Mi,j ∼= Mj,i that satisfy a coherence condition known as the cocycle condition. We say that modules over affine schemes have the property of descent for a family {Ui → X} if any family of compatible modules M...
متن کاملProperties of the Dual Cone of Monomial-positive Immanants
We investigate a cone in the symmetric group algebra introduced by Stembridge [2]. It is dual to the cone of monomial-positive immanants of n × n matrices with indeterminate entries. We present a new set of relations between elements of the dual cone, and use these relations to show that the cone is finitely generated for n = 6, generalizing Stembridge’s result for n = 5.
متن کاملDistinguish Between Benign and Malignant Prostate Using the Trace Element Con- tent Ratios in Prostatic Tissue as Tumor Markers
Mathews Journal of Cancer Science Distinguish Between Benign and Malignant Prostate Using the Trace Element Content Ratios in Prostatic Tissue as Tumor Markers Vladimir Zaichick1, Sofia Zaichick2 1Department of Radionuclide Diagnostics, Medical Radiological Research Centre, Russia. 2Department of Medicine, University of Illinois College of Medicine, USA. Corresponding Author: Vladimir Zaichick,...
متن کاملInvolutions on Standard Young Tableaux and Divisors on Metric Graphs
We elaborate upon a bijection discovered by Cools, Draisma, Payne, and Robeva in [CDPR12] between the set of rectangular standard Young tableaux and the set of equivalence classes of chip configurations on certain metric graphs under the relation of linear equivalence. We present an explicit formula for computing the v0-reduced divisors (representatives of the equivalence classes) associated to...
متن کامل